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Abstract

For Anderson localization on the Cayley tree, we study the statistics of various
observables as a function of the disorder strength W and the number N of
generations. We first consider the Landauer transmission TN . In the localized
phase, its logarithm follows the traveling wave form ln TN � ln TN + ln t∗

where (i) the disorder-averaged value moves linearly ln(TN) � − N
ξloc

and
the localization length diverges as ξloc ∼ (W − Wc)

−νloc with νloc = 1
and (ii) the variable t∗ is a fixed random variable with a power-law tail
P ∗(t∗) ∼ 1/(t∗)1+β(W) for large t∗ with 0 < β(W) � 1/2, so that all
integer moments of TN are governed by rare events. In the delocalized phase,
the transmission TN remains a finite random variable as N → ∞, and we
measure near criticality the essential singularity ln(T∞) ∼ −|Wc −W |−κT with
κT ∼ 0.25. We then consider the statistical properties of normalized eigenstates∑

x |ψ(x)|2 = 1, in particular the entropy S = −∑
x |ψ(x)|2 ln |ψ(x)|2 and

the inverse participation ratios (IPR) Iq = ∑
x |ψ(x)|2q . In the localized phase,

the typical entropy diverges as Styp ∼ (W − Wc)
−νS with νS ∼ 1.5, whereas it

grows linearly as Styp(N) ∼ N in the delocalized phase. Finally for the IPR,
we explain how closely related variables propagate as traveling waves in the
delocalized phase. In conclusion, both the localized phase and the delocalized
phase are characterized by the traveling wave propagation of some probability
distributions, and the Anderson localization/delocalization transition then
corresponds to a traveling/non-traveling critical point. Moreover, our results
point toward the existence of several length scales that diverge with different
exponents ν at criticality.

PACS numbers: 71.23.An, 71.30.+h, 72.15.Rn

(Some figures in this article are in colour only in the electronic version)

1751-8113/09/075002+34$30.00 © 2009 IOP Publishing Ltd Printed in the UK 1

http://dx.doi.org/10.1088/1751-8113/42/7/075002
http://stacks.iop.org/JPhysA/42/075002


J. Phys. A: Math. Theor. 42 (2009) 075002 C Monthus and T Garel

1. Introduction

Since its discovery 50 years ago [1] Anderson localization has remained a very active field of
research (see, for instance, the reviews [2–7]). According to the scaling theory [8], there is no
delocalized phase in dimensions d = 1, 2, whereas there exists a localization/delocalization at
finite disorder in dimension d > 2. To get some insight into this type of transition, it is natural
to consider Anderson localization on the Cayley tree (or the Bethe lattice) which is expected
to represent some mean-field limit. The tight-binding Anderson model on the Cayley tree has
been thus studied by various authors. In [9], the recursion equation for the self-energy has
been studied to establish the mobility edge as the limit of stability of localized states. In [10],
the exponent ν governing the divergence of the localization length was shown to be ν = 1.
In [11], the supersymmetric formalism has been used to predict the critical behavior of some
disorder-averaged observables (see also [12–15] where similar results have been obtained for
the case where the Anderson tight-binding model is replaced by a nonlinear σ model).

In [16, 17], the problem was reformulated in terms of recursions on Riccati variables to
obtain weak-disorder expansions. Other studies have focused on random-scattering models
on the Cayley tree [18–20]. More recently, the interest in Anderson localization on the Cayley
tree has been revived by the question of many-body localization [21], because the geometry
of the Fock space of many-body states was argued to be similar to a Cayley tree [22–25]. In
the present paper, we consider the Anderson tight binding model on the Cayley tree already
studied in [9–11, 16, 17] and we study numerically the statistical properties of Landauer
transmission and eigenstates as a function of the disorder strength W and of the number N of
generations. We find that several probability distributions propagate as traveling waves with a
fixed shape, as the number N of tree generations grows. The fact that traveling waves appear
in disordered models defined on trees has been discovered by Derrida and Spohn [26] on the
specific example of the directed polymer in a random medium and was then found in various
models [27]. For the case of Anderson localization on trees, the analysis of [9] concerning the
distribution of the self-energy in the localized phase is actually a ‘traveling wave analysis’ (see
appendix A for more details), although it is not explicitly mentioned in these terms in [9].
The fact that traveling waves occur has been explicitly seen in the numerical study of the
transmission distribution for a random-scattering model on the Cayley tree (see figure 8(b)
of [20]) and has been found within the supersymmetric formalism [12, 14, 15]. In the field
of traveling waves and front propagation (see the reviews [28, 29]), there exists an essential
separation between two classes: in ‘pulled fronts’, the velocity is determined by the form
of the tail of the front and thus by the appropriate linearized equation in the tail region,
whereas in ‘pushed fronts’, the velocity is determined by the bulk properties and thus by
the nonlinear dynamics in the bulk region. It turns out that for disordered systems defined
on trees, the traveling waves that appear usually correspond to cases where it is the tail
of the probability distribution that determines the velocity [26]. In particular for Anderson
localization on the Cayley tree, the traveling wave propagation is also determined by the tails
[9]. From this traveling wave point of view, the localization/delocalization Anderson transition
thus represents a traveling/non-traveling critical point. Such a traveling/non-traveling phase
transition for a branching random walk in the presence of a moving absorbing wall has been
studied recently in [30] and we find here very similar behavior in the critical region.

The paper is organized as follows. In section 2, we describe the statistical properties of
Landauer transmission. In section 3, we discuss the statistical properties of eigenstates, as
measured by the entropy and inverse participation ratios (IPR). We summarize our conclusions
in section 4. In appendix A, we translate the analysis of [9] concerning the distribution of
the self-energy in the localized phase into a traveling-wave tail analysis for the Landauer
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transmission discussed in section 2. In appendix B, we explain how such a similar tail analysis
can be performed in the delocalized phase for auxiliary variables that are closely related to
inverse participation ratios. Finally, in appendix C, we recall the results of [30] concerning
the traveling/non-traveling phase transition for a branching random walk in the presence of a
moving absorbing wall, since these results are used as a comparison in the text to understand
the finite-size scaling properties in the critical region.

2. Statistical properties of the Landauer transmission

In quantum coherent problems, the most appropriate characterization of transport properties
consists of defining a scattering problem where the disordered sample is linked to incoming
wires and outgoing wires and of studying the reflection and transmission coefficients. This
scattering theory definition of transport, first introduced by Landauer [31], has been much used
for one-dimensional systems [32–34] and has been generalized to higher dimensionalities and
multi-probes measurements (see the review [35]). In dimension d = 1, the transfer matrix
formulation of the Schrödinger equation yields that the probability distribution of the Landauer
transmission becomes asymptotically log-normal [32, 34] , i.e. one has

ln T
(1d)
L = − L

ξloc
+ L1/2u (1)

where ξloc represents the localization length and u is a sample-dependent random variable of
order O(1) distributed with a Gaussian law. Although it is often assumed that this log-normal
distribution persists in the localized phase in dimensions d = 2, 3, recent numerical studies
[36] are in favor of the following scaling form for the logarithm of the conductance:

ln g
(d)
L = − L

ξloc
+ Lω(d)u (2)

with exponents of order ω(d = 2) � 1/3 and ω(d = 3) � 1/5 [36], whereas ω(d = 1) = 1/2
from equation (1). For the Cayley tree that we consider in this paper, we will find below that
the fluctuation exponent vanishes ωCayley = 0, and we will discuss the probability distribution
of the variable u. But let us first recall the appropriate scattering framework for the Cayley
tree [17] .

2.1. Reminder on the Miller–Derrida framework to compute the Landauer transmission [17]

We consider the Anderson tight-binding model

H =
∑

i

εi |i〉〈i| +
∑
〈i,j〉

|i〉〈j |, (3)

where the hopping between nearest neighbors 〈i, j 〉 is a constant V = 1 and where the on-site
energies εi are independent random variables drawn from the flat distribution

p(εi) = 1

W
θ

(
−W

2
� εi � W

2

)
. (4)

The parameter W thus represents the disorder strength.
We consider the scattering geometry introduced in [17] and shown in figure 1: the finite

tree of branching ratio K is attached to one incoming wire at its root (generation n = 0) and
to K2N outgoing wires at generation 2N . One is interested in the eigenstate |ψ〉 that satisfies
the Schrödinger equation

H |ψ〉 = E|ψ〉 (5)
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tree with disorder

ψ(n ≤ 0) = eikn + re−ikn

ψj(n ≥ 4) = tje
ik(n−4)

n=1

n=2

n=3
n=4

n=0

j=1

j=2

j=2
4

outgoing wires

incoming wire

Figure 1. Scattering geometry of [17]: the disordered tree of branching ratio K = 2 starting at
generation n = 0 and ending at generation 2N (on the figure 2N = 4) is attached to one incoming
wire and to K2N outgoing wires. In section 2, we discuss the properties of the total transmission
T ≡ ∑

j |tj |2 = 1 − |r|2 where r is the reflection amplitude of the incoming wire, and tj the
transmission amplitudes of the outgoing wires.

inside the disorder sample and in the wires where one requires the plane-wave forms

ψ(n � 0) = eikn + r e−ikn,
(6)

ψj(n � 2N) = tj eik(n−2N).

These boundary conditions define the reflection amplitude r of the incoming wire and
the transmission amplitudes tj of the j = 1, 2, . . . , K2N outgoing wires. To satisfy the
Schrödinger equation of equation (5) within the wires with the forms of equation (6), one has
the following relation between the energy E and the wave vector k:

E = 2 cos k. (7)

To simplify the discussion, we will focus in this paper on the case of zero-energy E = 0 and
wave vector k = π/2

In this paper: E = 0 and k = π/2 (8)

because the zero-energy E = 0 corresponds to the center of the band where the delocalization
first appears when the strength W of the disorder is decreased from the strong disorder localized
phase.

Inside the Cayley tree 0 � n � 2N −1, the Schrödinger equation of equation (5) involves
one ancestor denoted by anc(n, j) and K descendants denoted by desm(n, j)

0 = ε(n, j)ψ(n, j) + ψ(anc(n, j)) +
K∑

m=1

ψ(desm(n, j)), (9)

whereas for the last generation 2N there are only one ancestor and one descendant (outgoing
wire)

0 = ε(2N, j)ψ(2N, j) + ψ(anc(2N, j)) + ψ(2N + 1, j). (10)
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As explained in [17], it is convenient to introduce the Riccati variables

R(n, j) ≡ ψ(anc(n, j))

ψ(n, j)
(11)

that represent the ratio of the wavefunction of two neighboring sites. On the outgoing wires,
these Riccati variables are fixed by equation (6) to be

R(2N + 1, j) = ψ(2N, j)

ψ(2N + 1, j)
= e−ik = −i. (12)

The Schrödinger equation of equation (10) gives the first recursion

R(2N, j) = −ε(2N, j) − 1

R(2N + 1, j)
= −ε(2N, j) − eik = −ε(2N, j) − i, (13)

whereas the Schrödinger equation of equation (9) gives the recursion inside the tree for
0 � n � 2N − 1

R(n, j) = −ε(n, j) −
K∑

m=1

1

R(desm(n, j))
. (14)

On the other hand, the value of the Riccati variable for the origin of the tree n = 0 is fixed by
the incoming wire of equation (6)

R(0) = ψ(−1)

ψ(0)
= e−ik + r eik

1 + r
(15)

and thus the reflection coefficient r can be obtained via

r = −R(0) − e−ik

R(0) − eik
= i + R(0)

i − R(0)
(16)

from the R(0) obtained via the recursion of equation (14). From the conservation of energy,
the total transmission T is related to the reflection coefficient |r|2

T ≡
∑

j

|tj |2 = 1 − |r|2. (17)

As explained in [17], the criteria for the localization/delocalization phases are then the
following:

(a) if the Riccati variable R(0) at the root of the tree converges toward a real random variable
as N → ∞, the reflection is total |r| = 1 and the transmission vanishes T = 0.

(b) if the Riccati variable R(0) keeps a finite negative imaginary part as N → ∞, the
reflection is only partial |r| < 1 and the transmission remains finite T = 1 − |r|2 > 0.

We refer to [17] for the results of a weak disorder expansion within this framework, and
for a numerical Monte Carlo approach to determine the mobility edge in the plane (E,W).
Here we will instead study the statistical properties of the transmission T at zero energy E = 0
as a function of the disorder strength W (equation (4)) and of the number N of generations.
But before discussing the disordered case, let us first describe the finite-size properties of the
pure case.
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2.2. Example: transmission of finite pure trees

In the pure case where all on-site energies vanish ε(n, j) = 0, all branches are equivalent and
there is no dependence on j . The recursions for Riccati variables of equations (12)–(14) give

Rpure(2N + 1) = −i

Rpure(2N) = −i

Rpure(n) = − K

Rpure(n + 1)
for 0 � n � 2N − 1

(18)

i.e. one obtains the simple alternation between odd and even generations

Rpure(2N − 1) = − K

Rpure(2N)
= −Ki

Rpure(2N − 2) = − K

Rpure(2N − 1)
= −i

. . . . . .

Rpure(1) = −Ki

(19)

Rpure(0) = −i. (20)

The reflection coefficient r thus vanishes exactly for any even size (2N)

rpure = i + Rpure(0)

i − Rpure(0)
= 0 (21)

and the transmission coefficient in each branch j = 1, . . . , K2N reads

t
pure
j = (1 + r)

2N∏
n=1

1

Rpure(n)
= 1

(−K)N
. (22)

(Note that for pure trees of uneven size, the reflection would not vanish. This is why in the
disordered case, we will only consider trees of even sizes 2N where in the corresponding
pure case, the reflection vanishes exactly for any finite tree.) It is instructive to write now the
corresponding wavefunction as a function of the generation n,

. . . ψpure(−4) = 1

ψpure(−3) = i

ψpure(−2) = −1

ψpure(−1) = −i

ψpure(0) = 1

ψpure(1) = i

K

ψpure(2) = − 1

K

ψpure(3) = − i

K2

ψpure(4) = 1

K2
. . . .

(23)

This exponential decay of the wavefunction in this delocalized case is very peculiar to the
tree geometry: it is imposed by the energy conservation and by the exponential growth of the
number of sites with the generation n.

6
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2.3. Statistics over the disordered samples of the transmission TN

2.3.1. Numerical pool method. If one wishes to study numerically real trees, one is limited
to rather small number of generations of order Nmax ∼ 12, 14 (see, for instance, the study
[37] based on exact diagonalization) because the number of sites and thus of random energies
grows exponentially in N. From the point of view of convergence toward stable probability
distributions via recursion relations, it is thus better to use the so-called pool method that will
allow us to study much larger number of generations (see equation (27)). The idea of the pool
method is the following: at each generation, one keeps the same number Mpool of random
variables to represent probability distributions. Within our present framework, the probability
distribution Pn(R) of the Riccati variables R at generation n will be represented by a pool of
Mpool complex values

{
R(1)

n , . . . , R
(Mpool)
n

}
. It is convenient from now on to change the notation

n → 2N − n with respect to figure 1 so that n = 0 now corresponds to the contacts with the
outgoing wires (see figure 1). The numerical results presented below have been obtained with
the following procedure:

(i) the random variables of the initial pool are given by (equation (13))

R0(j) = −ε0(j) − i, (24)

where ε(j) are independent random variables drawn with equation (4).
(ii) From the random variables Rn−1(j) of the pool at generation n−1, the pool at generation

n is constructed as follows. For each j = 1, 2, . . . ,Mpool, one generates a new
random energy εn(j) with the law of equation (4) and one draws K random indices
{j1(j), . . . , jK(j)} among the pool of generation (n − 1) to construct the variable Rn(j)

as follows (equation (14)):

Rn(j) = −εn(j) −
K∑

m=1

1

Rn−1(jm(j))
. (25)

(iii) From these pools of Riccati variables, one may compute via equations (16) and (17) a
pool of total transmission Tn(j) for trees of n generations using

Tn(j) = 1 − |rn(j)|2 = 1 −
∣∣∣∣ i + Rn(j)

i − Rn(j)

∣∣∣∣
2

. (26)

For the Anderson model on the Bethe lattice, the pool method has been already used, in
particular in [9] with a pool Mpool = 1800 with a number Nmax ∼ 30 of generations, in [17]
with pools up to Mpool = 10000, and in [20] with pools up to Mpool = 16384 with a number
Nmax ∼ 400 of generations. The pool method is also very much used for disordered systems
on hierarchical lattices (see, for instance, [38–40]).

In the remainder of this section, we present the numerical results obtained with a pool of
size

Mpool = 105 with a number of generations N � Nmax = 34.105. (27)

We have also results for a pool of size Mpool = 106 with a number of generations
N � Nmax = 24.104 to see how the results change with the pool size. However, the number
of generations Ng for this bigger pool Mpool = 106 has turned out to lead to be less precise in
the critical region. All figures shown below thus correspond to data obtained with the pool of
size Mpool = 105.

As is usual with the pool method [40], the location of the critical point depends on
the pool, i.e. on the discrete sampling with Mpool values of probability distributions. It is
expected to converge toward the thermodynamic critical point only in the limit Mpool → ∞

7
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0 1e+06 2e+06 3e+06 4e+06

0

N

W=17.4

W=17.3

W=17.2

W=17.1

W=17.0

ln T
N

(a)

typ

16.9 17 17.1 17.2 17.3 17.4
0

0.01

0.02

0.03

W

1/ξ
loc

(b)
W

c

Figure 2. Exponential decay of the typical transmission T
typ
N ≡ eln TN in the localized phase

W > Wc : (a) linear decay of ln TN as a function of the number N of generations (see
equation (30)). (b) Behavior of the slope 1/ξloc(W) as a function of the disorder strength W :
it vanishes linearly 1/ξloc(W) ∼ (W − W

pool
c )νloc with W

pool
c � 16.99 (see equation (28)) and

νloc = 1 (see equation (31)).

(see the discussion of appendix B.3). Nevertheless, for each given pool, the critical behavior
with respect to this pool-dependent critical point usually allows a good measure of critical
exponents [40]. For instance, for the pool of size Mpool = 105, the critical value Wc of the
disorder strength where the localization–delocalization occurs for the Landauer transmission
is of order

Wc(Mpool = 105) � 16.99. (28)

For the pool of size Mpool = 106, we find that it is higher and of order Wc(Mpool = 106) �
17.32 . . .. This rather important shift of the pseudo-critical point with the pool size which
has already been seen in [17], seems to be due to the very slow logarithmic convergence of
traveling wave velocity in the presence of cut-off (see the discussion of appendix B.3). So
we stress that here, in contrast to [9, 17], our goal is not to determine the true thermodynamic
mobility edge Wc(+∞), but instead to understand the critical behavior of the finite-pool results
with respect to the pool-dependent critical point of equation (28).

We will first discuss the behavior of the typical transmission T
typ
N defined by

ln
(
T

typ
N

) ≡ ln TN, (29)

as a function of the number N of generations and disorder strength W , before we turn to the
distribution around this typical value.

2.3.2. Exponential decay of the typical transmission T
typ
N in the localized phase W > Wc. In

the localized phase, one expects that the typical transmission T
typ
N defined by equation (29)

decays exponentially with the number N of generations

ln
(
T

typ
N

) ≡ ln TN(W > Wc) �
N→∞

− N

ξloc(W)
(30)

where ξloc represents the localization length that diverges at the delocalization transition

ξloc(W) �
W→W +

c

(W − Wc)
−νloc . (31)

We show in figure 2 our numerical results for the pool of size Mpool = 105 (equation (27)):
the exponential decay with N of equation (30) is shown in figure 2(a) for various disorder

8
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16.5 16.6 16.7 16.8 16.9 17

W

ln T

(a)

8

3.25

3.35

3.45

3.55

3.65

c

(b)

Figure 3. Behavior of the typical transmission T
typ
∞ of the infinite tree in the delocalized phase: (a)

ln T
typ
∞ ≡ ln T∞(W < Wc) as a function of the disorder strength W , (b) same data in a log–log plot

to measure the exponent of the essential singularity of equation (34): ln(− ln T
typ
∞ ) as a function

of ln(Wc − W): the slope is of order κT ∼ 0.25.

strengths W . The corresponding slope 1/ξloc(W) is shown as a function of W in figure 2(b):
we find that this slope vanishes linearly in (W − Wc), in agreement with the exact result
[10, 11]

νloc = 1 (32)

and in agreement with figure 7 of [20] concerning a random-scattering model on the Cayley
tree.

2.3.3. Behavior of the typical transmission T
typ
∞ in the delocalized phase W < Wc near

criticality.
In the delocalized phase, the typical transmission remains finite in the limit where the

number of generations N diverges

ln TN(W < Wc, N) �
N→∞

ln T∞(W < Wc) > −∞. (33)

As shown in figure 3, we measure the following essential singularity behavior of the typical
transmission:

ln T∞(W < Wc) �
W→W−

c

−(Wc − W)−κT with κT ∼ 0.25. (34)

The presence of essential singularities in transport properties near the localization transition
on the Bethe lattice has been found in [11] via the supersymmetric formalism (see also [12–15]
where similar results have been obtained for the case where the Anderson tight-binding model
is replaced by a nonlinear σ model). In particular, equation (71) of [11]) states that the leading
critical behavior of the diffusion constant is given by: lnD ∼ −|E − Ec|−1/2 (equation (71)
of [11]). We note that the exponent in this essential singularity is 1/2 instead of the exponent
of order 1/4 that we measure. The reason for this difference could be that the results of [11]
are based on the computation of the disorder-averaged two-point density–density correlation
function (see equation (2) of [11]), whereas our numerical results concern the typical value of
Landauer transmission, and not the disorder-averaged transmission which is expected to be
governed by rare events (see section 2.3.5). Also it is not clear to us what exactly represents the

9
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diffusion constant computed in [11], because it is known that on the Bethe lattice the dynamics
is not diffusive but ballistic in the delocalized phase [41], and that more generally the random
walk on the Bethe lattice is not diffusive because the tree geometry induces an effective bias
away from the origin (see, for instance, [42] and references therein). As a consequence, some
implicit reinterpretation of the Bethe lattice seems to underlie the statements of [11] that makes
difficult a precise comparison with our present numerical results.

2.3.4. Finite-size scaling in the critical region. If there exists some finite-size scaling in the
critical region for the typical Landauer transmission of the form

ln TN(W) � −NρT G(N1/νFS
T (Wc − W)) (35)

the matching of our results in the localized phase (see equation (30)) and in the delocalized
phase (equation (34)) requires a finite-size correlation length exponent νFS

T of order

νFS
T = νloc + κT = 1 + κT � 1.25. (36)

In another traveling/non-traveling phase transition studied in [30] (see the summary in
appendix C), it has been obtained that the finite-size scaling exponent νFS is determined
by the relaxation rate toward the finite value in the non-traveling phase. We have thus studied
the relaxation length toward the finite value in the delocalized phase. We find that our data for
ln TN are compatible with the form

ln TN(W < Wc) � −(Wc − W)−κT aN , (37)

where aN is a random stationary process as a function of N. We find that its autocorrelation
function is exponential

C(N) � e− N
ξrelax(W) (38)

and we measure that the relaxation length ξrelax(W) diverges with an exponent

ξrelax(W)∝ 1

(Wc − W)νrelax
with νrelax � 1.21 (39)

of the order of the exponent νFS
T of equation (36). We thus obtain that the critical properties are

qualitatively similar to the critical properties described in [30] (see the summary in appendix
C): the traveling phase is characterized by a velocity that vanishes linearly, but the finite
size scaling is governed by the relaxation length toward the asymptotic finite value of the
non-traveling phase. Exactly at criticality, we thus expect the following stretched exponential
decay of the typical transmission:

ln TN(Wc) � −NρT , (40)

where the exponent ρT is related to the other exponents by (see the scaling relations of
equations (C.9) and (C.11) in appendix C)

ρT = κT

νFS
T

= 1 − 1

νFS
T

. (41)

From our previous estimate of the exponent κT � 0.25, this would correspond to the numerical
value

ρT = κT

1 + κT

� 0.2. (42)

We have not been able to measure this stretched exponential behavior exactly at criticality
from our data, because a precise measure of the exponent ρT would require to be exactly at
the critical point.

10
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Figure 4. Evolution with N of the probability distribution PN(ln TN) of the logarithm of Landauer
transmission: (a) in the delocalized phase (here W = 10), the probability distribution PN(ln TN)

does not move with N, and vanishes with a discontinuity at the boundary ln TN = 0. (b) In the
localized phase (here W = 25), the probability distribution PN(ln TN) moves with N as a traveling
wave of fixed shape.

2.3.5. Distribution of the logarithm of the transmission. Up to now, we have only discussed
the behavior of the typical transmission of equation (29) as a function of N and W . We now
turn to the probability distribution of the logarithm of the transmission around its averaged
value, i.e. we consider the distribution of the relative variable

u ≡ ln TN − ln TN. (43)

We find that as N → ∞, this variable remains finite not only in the delocalized phase
where ln T∞ is finite, but also in the localized phase where ln TN decays linearly in N
(equation (30)). This means that in the localized phase, the probability distributions PN(ln TN)

actually propagate as a traveling wave with a fixed shape around its moving center ln TN as
shown in figure 4(b). This phenomenon has already been seen for random scattering models
on the Bethe lattice (see figure 8(b) of [20]). This is in contrast to the broadening with L
observed in low dimensions d = 1, 2, 3 (see equation (2)): the Cayley tree thus corresponds
to ωCayley = 0 in equation (2).

The fact that the shape is fixed can be used numerically to measure more precisely
the tails of this probability distribution by accumulating data over iterations: we show in
figure 5(a) the histograms of u obtained by this procedure for various disorder strengths W .
An essential property of this distribution is the right exponential tail

PW(u) �
u→+∞ e−β(W)u. (44)

In terms of the rescaled transmission t = TN

/
T

typ
N = eu (see equation (43)), this corresponds

to the power-law decay

P
(
t = TN

/
T

typ
N

) �
t→+∞

1

t1+β(W)
. (45)

We find that the selected exponent βselec(W) slightly grows as the disorder strength W

decreases, from a value of order β(W = 100) � 0.33 for the strong disorder W = 100 toward
a value of order β(W = 17) � 0.48 near criticality (see figure 5(a)). The velocity of the
traveling wave propagation of the whole distribution is actually determined by this power-law

11
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Figure 5. (a) Logarithm of the probability distribution P(u) of u = ln TN − ln TN as W varies
in the localized phase for various disorder strengths W = 17, 25, 50, 100: the exponential decay
as e−βu corresponds to slopes of order β(W = 17) � 0.48, β(W = 25) � 0.43, β(W =
50) � 0.35, β(W = 100) � 0.33. (b) Width σ = (u2)1/2 of the probability distribution of
u = ln TN − ln TN as a function of W : it remains finite both in the localized phase and in the
delocalized phase, but it presents a cusp singularity at criticality.

tail, as explained in detail in appendix A. In particular, the critical value β(W → Wc) = 1/2
has been predicted in [9] (see equation (A.33) in appendix A). An important consequence of
the power-law tail of equation (45) with β(W) � 1/2 is that all integer moments T n

N of the
Landauer transmission will be governed by rare events.

Finally, we show in figure 5(b) the width of the probability distribution of ln TN as a
function of W : it remains finite both in the localized phase and in the delocalized phase, but
it presents a cusp singularity at criticality because in the delocalized phase, the distribution
presents a singularity at finite distance from the typical value, as is clearly visible in figure 4(a):
the transmission is bounded by T � 1, i.e. the histogram of ln TN presents a discontinuity at
ln TN = 0.

3. Statistics of eigenstates

The Landauer transmission studied in the previous section is of course the most appropriate
observable to characterize the transport properties and to find the transition between the
conducting/non-conducting phases. However, one expects that these transmission properties
that emerge when the disordered sample is linked to incoming and outgoing wires are related
to the nature of eigenstates of the disordered sample in the absence of these external wires
(see figure 6). To determine whether a normalized eigenstate

∑
x

|ψ(x)|2 = 1 (46)

is localized or delocalized, the usual parameters are the inverse participation ratios

Iq ≡
∑

x

|ψ(x)|2q (47)

12
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n=0

n=1

n=4n=3

Figure 6. Cayley tree with branching ratio K = 2 where each interior site has K +1 = 3 neighbors.
In the figure the tree ends at generation 2N = 4.

of arbitrary power q. Another important quantity to characterize the spatial extent of an
eigenstate is its entropy

S ≡ −
∑

x

|ψ(x)|2 ln |ψ(x)|2. (48)

The normalization condition yields the identity Iq=1 = 1, and the entropy corresponds to

S = −∂qIq |q=1 = −∂q ln Iq |q=1. (49)

On a hypercubic lattice of size L in dimension d, containing NL = Ld sites, the delocalized
phase is characterized by the following typical behavior:

ln Iq ∼ −d(q − 1) ln L = −(q − 1) lnNL. (50)

and

S ∼ d ln L = lnNL (51)

These scalings are the same for pure homogeneous eigenfunctions with |ψ(x)| = 1/Ld for
all sites x ∈ Ld . At criticality, the scalings of the IPR involve a whole series of non-trivial
exponents and the wavefunction is said to be multifractal (see the review [7]). Finally in the
localized phase, the IPR and the entropy are finite.

In the present section, we discuss the statistical properties of these IPR and entropy for
zero-energy eigenstates for the Cayley tree of figure 6 as a function of the number N of tree
generations and of the disorder strength W .

3.1. Reminder on the Miller–Derrida framework to construct eigenstates

We refer to [17] where it is explained how eigenstates of finite trees can be constructed and how
the density of states can be obtained. Note that on a tree, boundary sites dominate so that one
needs a subtraction procedure to obtain the appropriate bulk density of states. In the following,

13
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we are not interested in the density of states, which does not contain any information on the
localized/delocalized nature of the spectrum. We wish to study instead the spatial properties
of eigenstates of zero-energy E = 0 (center of the band). The Schrödinger equation (9) yields
as before the recursion of equation (14) for the Riccati variables defined in equation (11). The
difference with the scattering case is now in the boundary conditions

R(2N, j) = −ε(2N, j) (52)

that replace equation (13). As a consequence, the Riccati variables are now real (and not
complex). The energy E = 0 will indeed be an eigenstate only if the Schrödinger equation is
also satisfied at the center of the finite tree at the center site

0 = ε(0) +
K+1∑
m=1

1

R(desm(0))
. (53)

Since the on-site energy ε(0) is a random variable drawn with some distribution, we may
consider that we choose ε(0) to satisfy equation (53) to obtain a typical eigenstate of zero
energy and to study its spatial properties. Let us first describe zero-energy eigenstate in the
pure case to stress the peculiarities of the tree geometry.

3.2. Structure of zero-energy eigenstate on the pure tree

In the pure case where all on-site energies vanish ε(n, j) = 0, the zero-energy eigenstate with
radial symmetry reads

ψ2n−1 = 0, (54)

ψ2n = ψ0

(
− 1

K

)n

, (55)

where the root amplitude ψ0 is determined by the normalization condition

1 =
∑

x

|ψ(x)|2 = |ψ0|2 + (K + 1)K|ψ2|2 + (K + 1)K3|ψ4|2 + · · · + (K + 1)K2N−1|ψ2N |2

= |ψ0|2
[

1 +
K + 1

K
N

]
. (56)

This state is the analog of the scattering state described in section 2.2. In particular, one sees
again an exponential decay of the wavefunction in this delocalized case which is very peculiar
to the tree geometry: in the normalization condition of equation (56), this exponential decay
is exactly compensated by the exponential growth of the number of sites at generation 2n,
so that all generations 2n = 2, 4, . . . , 2N carry exactly the same weight in the normalization
condition, and the root weight |ψ0|2 vanishes as 1/N in the thermodynamic limit, where (2N)

is the number of generations of the tree.
For this state, the usual inverse participation ratio of equation (47) for q = 2 reads

I
pur
2 (2N) =

∑
x

|ψ(x)|4 = |ψ0|4 + (K + 1)K|ψ2|4

+ (K + 1)K3|ψ4|4 + · · · + (K + 1)K2N−1|ψ2N |4 (57)

= |ψ0|4
[

1 +
K + 1

K3

1 − (
1

K2

)N

1 − 1
K2

]
. (58)

More generally for q > 1, one obtains the following decay with the number of generations

I pur
q (2N) ∝

N→∞
|ψ0|2q ∼ 1

Nq
for q > 1 (59)
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In terms of the total number of sites

N (2N) = 1 + (K + 1)

2N−1∑
n=1

Kn = 1 + (K + 1)
K2N − 1

K − 1
= K2N(K + 1) − 2

K − 1
(60)

this corresponds to

ln I pur
q (2N) ∝

N→∞
−q ln N ∝

N→∞
−q ln(lnN (2N)) for q > 1. (61)

This behavior is thus very anomalous with respect to the corresponding decay as (−(q −
1) lnNL) for the IPR of pure states in finite dimension d (see equation (50)).

Moreover, since the eigenfunction normalization yields the identity Iq=1 = 1, one sees
that there exists some discontinuity as q → 1. In particular, the entropy of equation (48)
which can usually be computed as the derivative of equation (49) should be computed directly
here, and one obtains

Spur(2N) = −|ψ(0)|2 ln |ψ(0)|2 − (K + 1)K|ψ(2)|2 ln |ψ(2)|2
− · · · − (K + 1)K2N−1|ψ(2N)|2 ln |ψ(2N)|2 (62)

= |ψ(0)|2
[
−

(
1 +

K + 1

K
N

)
ln |ψ(0)|2 +

K + 1

K
N(N + 1) ln K

]
. (63)

Using equation (56), one obtains the following behavior for large N:

Spur(2N) = ln

(
1 +

K + 1

K
N

)
+

K+1
K

N(N + 1) ln K(
1 + K+1

K
N

) �
N→∞

N ln K. (64)

In terms of the total number of sites of equation (60), the entropy is proportional to the
logarithm of the number of sites

Spur(2N) �
N→∞

N ln K �
N→∞

1
2 lnN (2N) (65)

that should be compared with the growth as lnN (2N) for pure eigenstates in dimension d (see
equation (51)).

In conclusion, the tree geometry induces very anomalous scalings in (ln lnN ) for the
logarithm of IPR of pure states (see equation (61)) with respect to the case of finite dimension
d, whereas the entropy is well behaved in (lnN ) (see equation (65)). In the disordered case,
we expect to observe similar behavior, whereas the IPR and the entropy will remain finite in
the localized phase.

3.3. Recursion relation for inverse participation ratios

To compute the inverse participation ratio Iq (equation (47)) via recursion, one needs to
introduce besides the Riccati variable of equation (11) the auxiliary variables defined by

C(q)(n, j) =
∣∣∣∣ ψ(n, j)

ψ(anc(n, j))

∣∣∣∣
2q

+
∑

l

∣∣∣∣ ψ(l)

ψ(anc(n, j))

∣∣∣∣
2q

, (66)

where the sum is over all sites l that are descendants of the site (n, j) of the tree. These
variables satisfy the following recurrence inside the tree 1 � n � 2N − 1:

C(q)(n, j) =
(

1

R2(n, j)

)q
[

1 +
K∑

m=1

C(q)(desm(n, j))

]
(67)

and the initial conditions at the boundaries

C(q)(2N, j) =
(

1

R2(2N, j)

)q

. (68)
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At the central root, one needs to impose the normalization

1 =
∑

x

|ψ(x)|2 = |ψ(0)|2
[

1 +
K+1∑
m=1

C(1)(1,m)

]
(69)

that determines the weight |ψ(0)|2 of the root in terms of the variables C(1) of the branches.
To compute the inverse participation ratio of parameter q of equation (47), one needs the

variables C(q) together with the variables C(1)

Iq =
∑

x

|ψ(x)|2q = |ψ(0)|2q

[
1 +

K+1∑
m=1

C(q)(1,m)

]
=

[
1 +

∑K+1
m=1 C(q)(1,m)

]
[
1 +

∑K+1
m=1 C(1)(1,m)

]q . (70)

3.4. Recursion for the entropy

To compute recursively the entropy of equation (48), one needs similarly to introduce the
auxiliary variable

σ(n, j) = −
∑

l

|ψl|2∑
l′ |ψl′ |2 ln

|ψl|2∑
l′ |ψl′ |2 , (71)

where the sum over l denotes the sum over the site (n, j) and all its descendants: σ(n, j) thus
represents the entropy for the branch containing (n, j) and its descendants.

The initial conditions at the boundaries are simply

σ(2N, j) = 0 (72)

and the recursion inside the tree 1 � n � 2N − 1 can be written as

σ(n, j) =
∑K

m=1 C(1)(desm(n, j))σ (desm(n, j))

1 +
∑K

m=1 C(1)(desm(n, j))
+ Smix, (73)

where the first term represents the weighted contribution of the branches entropies and where
the second term represents the mixing entropy

Smix = −p0 ln p0 −
K∑

m′=1

pm′ ln pm′ (74)

with the weights

p0 = 1(
1 +

∑K
m=1 C(1)(desm(n, j))

) (75)

pm′ = C(1)(desm′(n, j)))(
1 +

∑K
m=1 C(1)(desm(n, j))

) (76)

normalized to p0 +
∑K

m′=1 pm′ = 1. At the central site of the tree, one uses the same formula
but with (K + 1) branches instead of K branches.

3.5. Numerical results on the statistics of eigenstates

3.5.1. Numerical pool method. To study the statistical properties of eigenstates, we have
used again the pool method explained in section 2.3.1. The only difference is that for the
transmission, we have followed the recursions for the complex Riccati variables, whereas
here we follow the recursions for the real Riccati variable R and for the auxiliary variables
C(1), C(2) and σ described above.
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Figure 7. Statistics of the entropy S(N) ≡ −∑
x |ψ(x)|2 ln |ψ(x)|2 of a normalized zero-energy

eigenstate: (a) evolution of the typical entropy Styp(N) ≡ eln S(N) with the number N of generations:
it grows linearly in N in the delocalized phase, whereas it remains finite in the localized phase. (b)
Asymptotic width σ = (v2)1/2 of the relative variable v = ln S − ln S as a function of the disorder
strength W : the width converges to 0 (as 1/N ) in the delocalized phase, whereas it is finite in the
localized phase.

3.5.2. Statistics of the entropy of an eigenstate. We first consider how the eigenstate entropy
defined in equation (48) evolves with the number N of generations. As shown in figure 7(a),
the typical value grows linearly in N in the delocalized phase
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Figure 8. Critical behavior of the typical entropy Styp(N = ∞) = eln S(N=∞) in the localized
phase (a) ln Styp(N = ∞) = ln S(N = ∞) as a function of the disorder strength W near the
critical point. (b) The same data as a function of ln(W −Wc) to measure the exponent of the power
law of equation (79): the slope is of order νS � 1.5.

Styp(N,W < Wc) ≡ eln S(N) �
N→∞

aN (77)

where the factor a varies smoothly with W and does not vanish continuously near the critical
point. In this delocalized phase, we moreover find that the width of the relative variable
v = ln SN − ln SN decays to zero as N → ∞

[(ln SN − ln SN)2]1/2
W<Wc

�
N→∞

1

N
. (78)

In the localized phase in contrast, the typical value and the width of the relative variable
v = ln SN − ln SN remain finite as N → +∞ (see figures 7(a) and (b)).

As shown in figure 8, we find that the typical entropy of an infinite tree of the localized
phase diverges with the following power law near criticality:

Styp ≡ eln S(N=+∞) �
W→W +

c

1

(W − Wc)νS
with νS � 1.5. (79)

The entropy measures the size of the region where the weight |ψ(x)|2 is concentrated, whereas
the localization length ξloc ∼ 1/(W − Wc)

νloc=1 describes the far exponential decay of the
transmission T (equation (30)). We thus conclude that in the localized phase, besides the
localization length ξloc ∼ 1/(W − Wc)

νloc=1 known since [10], there exists a larger diverging
length scale

ξS(W > Wc) ∝
W→W +

c

1

(W − Wc)νs∼1.5
(80)

that characterizes the size where the weight |ψ(x)|2 is concentrated.

3.5.3. Statistics of the root weight |ψN(0)|2 and of the IPR I2. As explained above, the root
weight |ψN(0)|2 and of the IPR I2 are determined by the auxiliary variables C(q) introduced
in equation (66). We thus expect that the localized and delocalized phases correspond to the
following behavior for the auxiliary variables C(q):
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(i) In the localized phase, the auxiliary variables C(q) will remain finite random variables as
the number of generations diverge N → ∞. Then the root weight |ψN(0)|2 and the IPR
Iq remain finite as N → ∞.

(ii) In the delocalized phase, the auxiliary variables C(q) will instead grow exponentially with
the number N of generations with some Lyapunov exponents λq > 0 defined by

ln C(q) �
N→∞

λqN. (81)

The corresponding typical behavior of the root weight and of the IPR then reads

ln |ψN(0)|2 �
N→∞

−λ1N (82)

and

ln Iq �
N→∞

−(qλ1 − λq)N. (83)

We find numerically that the probability distributions of auxiliary variables (ln Cq) move
as traveling waves of velocity λq (see equation (81)) with fixed shape (see figure 12 of
appendix B where the fixed shape is shown for q = 1 and q = 2). We explain in appendix B
how the Lyapunov exponents λq can be determined via a tail analysis that yields the identity
(see equation (B.13))

λq = qλ1 (84)

so that the logarithm of the IPR Iq decays slower than linearly in N, because the coefficient in
equation (83) exactly vanishes. Physically, one could expect the decay to be of order (ln N)

as in equation (61) concerning pure states on the Cayley tree, but we have not been able to
measure the behavior of the IPR, because within the pool method that we use, it turns out that
the pool-dependent critical point is not the same for the variables C(1) and for C(2) (see more
details in appendix B.3), so that it does not seem easy with the pool method to extract reliable
results concerning I2.

In the remainder of this section, we thus focus on the statistical properties of the root
weight |ψ(0)|2 that is determined by the auxiliary variable C(1) via equation (69). The fact
that the pool-dependent critical point for C(1) is the same as the critical point found for the
Landauer transmission can be understood from the tail analysis of appendices A and B that
involve exactly the same integral kernel.

In the delocalized phase, the root weight |ψN(0)|2 presents the typical decay of
equation (82). We show in figure 9(a) that the corresponding Lyapunov exponent λ1(W)

vanishes linearly in the critical region

λ1(W) �
W→W−

c

(Wc − W) (85)

i.e. we find the same exponent νloc = 1 as for the divergence of the correlation length of the
localized phase (see equation (32)). This can be understood from the tail analysis presented
in the Appendices A and B.

We find that the width of the relative variable z = ln |ψN(0)|2 − ln |ψN(0)|2 remains finite
in the limit N → +∞ both in the localized phase and in the delocalized phase: its behavior as
a function of the disorder strength W presents a cusp at Wc as shown in figure 9(b).

In the localized phase, the root weight remains finite as N → ∞. As shown in figure 10,
we measure the following essential singularity:

ln ψ∞(0) �
W→W +

c

− 1

(W − Wc)κ0
with κ0 � 1. (86)
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Figure 9. (a) In the delocalized phase, the logarithm of the root weight decays linearly
ln |ψN(0)|2 ∼ −λ1(W)N : the figure shows that the slope λ1(W) vanishes linearly λ1(W) ∼
(W

pool
c − W) (see equation (85) with νloc = 1). (b) Width σ = (z2)1/2 of the relative variable

z = ln |ψN(0)|2 − ln |ψN(0)|2 in the limit N → +∞ as a function of the disorder strength W :
it remains finite both in the localized and delocalized phases, but it presents a cusp at the critical
point Wc.
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Figure 10. Critical behavior of the root weight |ψ∞(0)|2 of an infinite tree in the localized phase:
(a) ln |ψ∞(0)|2 as a function of the disorder strength W and (b) ln(−ln |ψ∞(0)|2) as a function
of ln(W − Wc) to measure the exponent of the essential singularity of equation (86): we measure
asymptotically a slope of order κ0 ∼ 1.

As in section 2.3.4, we now discuss the finite-size scaling in the critical region. If there
exists some finite-size scaling in the critical region for the typical root weight, the matching
of our results in the delocalized phase (see equation (82) and (85)) and in the localized phase
(equation (86)) requires a finite-size correlation length exponent νFS

0 of order

νFS
0 = 1 + κ0 � 2. (87)

We have performed the analysis described in section 2.3.4 and we measure that the relaxation
length ξrelax(W) toward the finite value of equation (86) diverges with an exponent

ξrelax(W)∝ 1

(W − Wc)νrelax
with νrelax � 2 (88)
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of the order of the exponent νFS
0 of equation (87). We thus obtain that the critical properties

are again qualitatively similar to the critical properties described in [30] (see the summary in
appendix C): the traveling phase is characterized by a velocity that vanishes linearly, but the
finite size scaling is governed by the relaxation length toward the asymptotic finite value of the
non-traveling phase. Exactly at criticality, we thus expect the following stretched exponential
decay of the typical transmission:

ln |ψN(0)|2|W=Wc � −Nρ0 , (89)

where the exponent ρ0 is related to the other exponents by (see the scaling relations of
equations (C.9) and (C.11) in appendix C)

ρ0 = κ0

νFS
0

= 1 − 1

νFS
0

. (90)

From our previous estimate of the exponent κ0 � 1., this corresponds to the numerical value

ρ0 = κ0

1 + κ0
� 0.5. (91)

Again, as explained after equation (42), we have not been able to measure this stretched
exponential behavior exactly at criticality from our data, because a precise measure of the
exponent ρ0 would require to be exactly at the critical point.

4. Conclusions and perspectives

In summary, for the Anderson model on the Bethe lattice, we have studied numerically the
statistics of the Landauer transmission TN and the statistics of eigenstates at the center of
the band E = 0, as a function of the disorder strength W and the number N of generations. We
have shown that both the localized phase and the delocalized phase are characterized by the
traveling wave propagation of some probability distributions. In the text, we have presented
detailed numerical results, and in appendices A and B, we have explained how the velocities
of the traveling waves are determined by the tails, via the properties of the integral kernel
introduced in [9]. The Anderson transition then corresponds to a traveling/non-traveling
critical point for these traveling waves, and the critical properties obtained are very similar
to the traveling-wave phase transition studied in [30]: (i) the finite value of the non-traveling
phase presents an essential singularity, (ii) the relaxation length toward this essential singularity
determines the finite-size scaling in the critical region and (iii) the finite-size correlation length
exponent νFS is different from the value νloc = 1 that governs the vanishing of the velocity
in the traveling-wave phase. We thus hope that in the future, these properties for Anderson
localization on the Cayley tree will be better understood by extending the methods that have
been developed recently for the class of the Fisher-KPP traveling waves (see [30, 43] and
references therein).

How results obtained on the Bethe lattice are related to properties of Anderson localization
in finite dimension d is of course a difficult question. During the history of localization, many
values for the upper critical dimension have been proposed such as dc = 4, 6, 8, +∞. Even
within the supersymmetric community, there seems to be different interpretations. Mirlin
and Fyodorov [45] consider that the essential singularities that appear on the Bethe lattice,
are directly related to the exponential growth of the number of sites with the distance, and
will become conventional power-law behavior as soon as d < ∞, so that the upper critical
dimension is actually dc = +∞. In contrast, Efetov [15] argues that the results obtained for the
Bethe lattice are relevant to Anderson transition in high dimension d when reinterpreted within
the so-called ‘effective medium approximation’. For the Landauer transmission, the upper
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critical dimension dc can be defined as the dimension where the exponent ω(d) concerning the
width of the sample-to-sample distribution in the localized phase (see equation (2)) vanishes
ω(dc) = 0. This means that for d � dc, the probability distribution would travel as a traveling
wave in the whole localized phase. To determine whether dc = +∞ or dc < +∞, it would
be thus interesting to understand whether the traveling wave propagation with a fixed shape is
possible only on trees or whether it can also occur in sufficiently high dimension d.

In low dimensions, the probability distribution of the logarithm of the transmission is
known to broaden with some exponent ω(d) > 0 (see equation (2)) in the localized phase,
whereas the probability distribution of the logarithm of IPR is known to shrink with the system
size in the delocalized phase [46] (see also figure 4(a) of [49] where the same phenomenon
occurs for the directed polymer in 1 + 3 dimensions). However traveling wave propagations
of the probability distribution P(ln Iq) of inverse participation ratios Iq have actually been
found in finite dimensions but only exactly at criticality. This phenomenon has been first
obtained for the power-law random band matrix model [47] and has been then observed for
the Anderson model in dimensions d = 3, 4 [48]: the motions of the typical values ln Iq

with (ln L) determine the multifractal spectrum, whereas the reduced variables y = Iq/I
typ
q

keep fixed distributions presenting power-law tails with q-dependent exponents. We have
actually observed the same behavior for the directed polymer in 1 + 3 dimensions exactly at
the localization/delocalization transition (see figures 3(a) and (b) of [49]). In all these cases, it
would be thus very nice to better understand the relations between the tails of the distributions
and the motions of the typical values, and to identify the wave equation that underlies these
traveling waves.

Finally, our work raises once again the question whether Anderson transitions are
characterized by several length scales that diverge with various ν exponents. Here for the
Cayley tree, besides the exponent νloc = 1 that has been predicted for a long time [10],
we have found other diverging lengths with the following physical meanings: (i) in the
localized phase, besides the exponent νloc = 1 associated with the divergence of localization
length ξloc ∼ 1/(W − Wc)

νloc=1 that describes the far exponential decay of the transmission
T (equation (30)), we have found that the critical behavior of the entropy is governed by
another diverging length scale with νs ∼ 1.5 (equation (80)) that characterizes the size where
the weight |ψ(x)|2 is concentrated. (ii) In the delocalized phase, we have found that the
Landauer transmission reaches its asymptotic value after a length diverging as νFS

T ∼ 1.25
(equation (36)) that governs the finite-size scaling of the transmission in the critical region.
Even if the precision of numerically measured critical exponents can always be discussed, we
feel nevertheless that our numerical results are not compatible with the existence of the single
exponent νloc = 1. Note that for the directed polymer on the Cayley tree, we have also found
previously that the critical properties involve two exponents ν = 2 and ν ′ = 1 [50]. Whether
there exist various exponents ν for the Anderson model in finite dimension d has been debated
for a long time. The majority of papers on Anderson localization seem in favor of a single ν

(see the reviews [2–7]), but it seems to us that numerical papers actually study always the same
type of observables. In particular, we have not been able to find numerical studies concerning
the entropy of eigenstates. On the theoretical side, we are not aware of many theories in
favor of various ν exponents, except (i) the supersymmetric studies of [14, 15] that involve
two different diverging length scales, called respectively the localization length and the phase
coherence length. (ii) The pseudo-delocalization transition of the random hopping model in
dimension d = 1, that is characterized by the two exactly known correlation length exponents
ν = 1 and ν = 2 (see [51] and references therein), as in the other models described by the
same strong disorder fixed point (see the review [52]). We feel that if localization models
exhibit several ν exponents both on the Cayley tree which represents some mean-field d = ∞
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limit and in some models in dimension d = 1, the possibility of various ν for Anderson
transition in dimension d = 3 should be reconsidered by studying in detail the statistics of
various observables.

Appendix A. Tail analysis for the traveling wave of the Landauer transmission in the

localized phase

In this appendix, we translate the analysis of [9] concerning the distribution of the self-energy in
the localized phase for the traveling-wave propagation of the Landauer transmission discussed
in section 2.

The recursion of equation (14) for the complex Riccati variable Rn reads more explicitly
in terms of its real and imaginary parts Rn = Xn−iYn with Xn ∈]−∞, +∞[ and Yn ∈ [0, +∞[

Xn = −εn −
K∑

m=1

Xn−1(m)

X2
n−1(m) + Y 2

n−1(m)
(A.1)

Yn =
K∑

m=1

Yn−1(m)

X2
n−1(m) + Y 2

n−1(m)
, (A.2)

where the random on-site energies εn are drawn from the flat distribution of equation (4). The
Landauer transmission of equation (26) then reads

Tn = 1 −
∣∣∣∣ Xn + i(1 − Yn)

−Xn + i(1 + Yn)

∣∣∣∣
2

= 4Yn

X2
n + (Yn + 1)2

. (A.3)

In the delocalized phase, this recursion of equation (A.2) is difficult to analyze because
one has to find the joint distribution of the two finite variables (X, Y ) that remain stable upon
iteration. In the localized phase however, the problem is simpler [9] as we now recall.

A.1. Linearized recursions in the localized phase

In the localized phase, if the imaginary part Yn converge toward zero exponentially in n as

Yn = e−vnyn, (A.4)

where v > 0 and where yn remains a finite random variable upon iteration, one has then to
study the simpler recurrence for large n [9, 17]

Xn = −εn −
K∑

m=1

1

Xn−1(m)
(A.5)

e−vyn =
K∑

m=1

yn−1(m)

X2
n−1(m)

.

Note that the form of equation (A.4) corresponds to a traveling wave of velocity v for the
variable (ln Yn)

ln Yn = −vn + ln yn. (A.6)

The real part Xn satisfies now a closed recurrence independent of the Yn, and its stable
distribution P ∗(X) satisfies the closed equation

P ∗(X) =
∫

dεp(ε)

∫
dX1P

∗(X1) · · ·
∫

dXmP ∗(Xm)δ

[
X + ε +

K∑
m=1

1

Xm

]
. (A.7)
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An important property of this distribution is that it presents the power-law tail

P ∗(X) �
X→±∞

KP ∗(0)

X2
(A.8)

because whenever one of the K variables Xi on the right-hand side of equation (A.7) is close
to 0, the variable X of the left-hand side is large with X ∼ −1/Xi .

The stable joint distribution P ∗(X, y) satisfies

P ∗(X, y) =
∫

dεp(ε)

∫
dX1 dy1P

∗(X1, y1) · · ·
∫

dXm dymP ∗(Xm, ym)δ

×
[
X + ε +

K∑
m=1

1

Xm

]
δ

[
y −

K∑
m=1

ym

e−vX2
m

]
. (A.9)

A.2. Tail analysis

The idea of [9] is to look for the power-law tail in y that is compatible with the recursion
equation, i.e. one assumes

P ∗(X, y) �
y→∞

A(X)

y1+β
(A.10)

with some exponent 0 < β < 1. Note that, in the traveling wave language of
equation (A.6), this is equivalent to look for solutions with an exponential tail e−βu for the vari-
able u = ln Yn +nv = ln yn. So this corresponds to the usual exponential tail analysis of fronts
[28, 29], except for the following difference: in usual studies of propagation into unstable
phases, it is the ‘forward tail’ that has an exponential decay and that determines the velocity,
whereas in our present case, it is the ‘backward tail’ that determines the propagation.

In Laplace transform with respect to y, the power-law decay of equation (A.10)
corresponds to the following singular expansion near the origin:

P̂ ∗(X; s) ≡
∫ +∞

0
dy e−syP ∗(X, y)

= P ∗(X) −
∫ +∞

0
dy(1 − e−sy)P ∗(X, y)

= P ∗(X) −
∫ +∞

0

dv

s
(1 − e−v)P ∗

(
X,

v

s

)

�
s→0

P ∗(X) − sβA(X)

∫ +∞

0
dv

(1 − e−v)

v1+β
. (A.11)

Equation (A.9) becomes for the Laplace transform P̂ ∗(X; s)

P̂ ∗(X; s) =
∫

dεp(ε)

∫
dX1P̂

∗
(

X1,
s

λX2
1

)

· · ·
∫

dXmP̂ ∗
(

Xm,
s

λX2
m

)
δ

[
X + ε +

K∑
m=1

1

Xm

]
. (A.12)

Using the expansion of equation (A.11), one obtains that the function A(X) has to satisfy the
eigenvalue equation

e−vβA(X) = K

∫
dX1(
X2

1

)β
Q

(
X +

1

X1

)
A(X1), (A.13)
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where the function Q(u) represents the stationary distribution of the variable u = −ε −∑K
m=2

1
Xm

Q(u) =
∫

dεp(ε)

∫
dX2P

∗(X2) · · ·
∫

dXmP ∗(Xm)δ

[
u + ε +

K∑
m=2

1

Xm

]
(A.14)

(see equations (6.5) and (6.6) in [9]).

A.3. Eigenvalue problem for an integral kernel

The tail analysis thus leads to the eigenvalue problem the integral kernel appearing in
equation (A.13)

�A(X) = K

∫
dX1(
X2

1

)β
Q

(
X +

1

X1

)
A(X1). (A.15)

For each β and W , the integral kernel is positive, and thus one expects some continuous analog
of the Perron–Froebenius theorem: the iteration of the integral kernel will converge toward a
positive eigenvector A0(X) that is associated with the maximal eigenvalue �0(β,W) of the
kernel. For instance, for the special case β = 0, the solution is simply A(X) = P ∗(X) (see
equations (A.7) and (A.14)) and

�0(β = 0,W) = K. (A.16)

Except for this case β = 0, we are not aware of any explicit solution for the eigenvalue
�0(β,W) (even for the simpler case where the distribution of the on-site energies p(ε) is a
Cauchy law and where the distributions P(X) and Q(u) are also Cauchy laws [9, 17]). With
equations (A.13) and (A.15), one concludes that at fixed W , each mode β is associated with
the velocity v(β,W) (equation (A.4))

v(β,W) = − 1

β
ln �0(β,W). (A.17)

A.4. Selection of the tail exponent and of the velocity of the traveling wave

The selection of the tail exponent β of equation (A.10) and of the corresponding velocity v(β)

of equation (A.4) usually depend on the form of the initial condition [26, 28, 29]. In our
present case, the initial condition is completely localized (see equation (13))

Pini(Y ) = δ(Y − 1). (A.18)

In this case, one expects that the solution that will be dynamically selected [26, 28, 29]
corresponds to the tail exponent βselec(W) and to the velocity vselec(W) = v(βselec(W),W)

determined by the following extremization:

0 = [∂βv(β,W)]β=βselec(W) =
[

1

β2
ln �0(β,W) − 1

β

∂β�0(β,W)

�0(β,W)

]
β=βselec(w)

. (A.19)

The critical point is then determined by the two conditions

v(βc,Wc) = 0, (A.20)

∂βcv(βc,Wc) = 0. (A.21)
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A.5. Example in the ‘strong disorder approximation’

Since the general discussion is rather obscured by the absence of an explicit expression for the
eigenvalue �0(β,W) of the kernel of equation (A.15), it is useful to consider the following
strong disorder approximation (called ‘upper limit’ condition in [9]), where the recursion for
the Xn in equation (A.5) is simply replaced by [9]

Xn � εn. (A.22)

The argument is that in the limit of very large W , the distribution of X has also a width
of order W , so that the neglected terms in equation (A.5) are of order K/W . Of course
the approximation of equation (A.22) is not very well controlled, because it concerns
random variables, and it suppresses important correlations between the variables (X, Y ) of
equation (A.5). Nevertheless, it is useful to consider it before returning to the true recursions
of equation (A.5), because with equation (A.22), the eigenvalue �0(β,W) is replaced by
simple expression [9] (see also section 7.2 of [17] where the approximation of independence
between (X, Y ) is considered for the Cauchy case)

�SD
0 (β,W) = K

∫
dεp(ε)|ε|−2β. (A.23)

The velocity then reads

vSD(β,W) = − 1

β
ln

(
K

∫
dεp(ε)|ε|−2β

)
. (A.24)

For the flat distribution p(ε) of random site energies (equation (4)), one thus obtains

vSD(β,W) = − 1

β
ln

(
K

1 − 2β

(
2

W

)2β
)

= 2 ln
W

2
− 1

β
ln

(
K

1 − 2β

)
. (A.25)

The function vSD(β) is defined on the interval 0 < β < 1/2: it flows toward (−∞) in the
limits β → 0 and β → 1/2 with the following behavior:

vSD(β,W) �
β→0

− ln K

β
(A.26)

and

vSD(β,W) �
β→1/2

− 1

β
ln

1

1 − 2β
. (A.27)

It has a single maximum at βSD
selec given by the extremum condition of equation (A.19), so

that βSD
selec is actually independent of W . For K = 2, the selected exponent is of order

βSD
selec � 0.3133 for any W . We note that this value is close to the value β(W = 100) � 0.33

that we measure for the large disorder W = 100 (see figure 5(a)). In conclusion, this ‘strong
disorder approximation’ allows us to see explicitly how things work on a simple example, and
seems to give a reasonable value of βselec for very large W .

A.6. Argument in favor of 0 < βselec(W) < 1/2

We now return to the analysis of the full problem of equation (A.5). Here we should say that
we do not agree with the discussion of [9] concerning the selection of the tail exponent β:

(i) In [9], the authors conclude that within the localized phase, βselec(W) decreases from
unity and reaches βc = 1/2 exactly at criticality (see the text between equations (6.8) and
(6.9) in [9]).
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(ii) In our numerical results of section 2 we have found instead that the selected exponent
βselec(W) is always smaller than 1/2: it slightly grows as the disorder strength W decreases
and has a value close to 0.5 near criticality (see figure 5(a).

We propose the following argument to justify our finding 0 < βselec(W) < 1/2. We
think that the tail analysis is actually well defined only on the interval 0 < β < 1/2 for the
following reasons. The eigenvalue equation (A.15) relates the behavior of A(X) at |X| → ∞
to the behavior of A(X) near the origin X → 0. For X → ∞, the function Q

(
X + 1

X1

)
will

be finite in the region where
(
X + 1

X1

)
is finite, i.e. the integration is dominated by the region

X1 ∼ −1/X and we obtain the power-law decay

A(X) �
|X|→∞

KA(0)

�0(β)|X|2−2β
. (A.28)

However the function A(X) has to be integrable at |X| → ∞ to obtain from equation (A.10)
the probability of the variable y alone at large y

P ∗(y) =
∫ +∞

−∞
dXP ∗(X, y) �

y→∞

∫ +∞
−∞ dXA(X)

y1+β
. (A.29)

According to equation (A.28), the function A(X) is integrable only for

0 < β < 1
2 (A.30)

i.e. we obtain that the tail analysis has a meaning only for 0 � β < 1/2. In the limit β → 0,
we expect from equation (A.16) the same behavior as in equation (A.26)

v(β,W) �
β→0

− ln K

β
. (A.31)

Exactly at β = 1/2, the authors of [9] have argued that

[∂β�0(β,W)]β=1/2 = 0 (A.32)

for any W , as a consequence of the symmetry �0(β,W) = �0(1 − β,W) coming from
the consideration of the adjoint kernel (see more details around equations (6.7) and (6.8) in
[9]). Here in contrast to [9], we think that the region β > 1/2 is not physical because of
equation (A.28), but the condition of equation (A.32) is useful to understand why the critical
point determined by equations (A.21) corresponds to the tail exponent [9]

β(W) �
W→W +

c

βc = 1
2 . (A.33)

To summarize the selection mechanism, the shape of the velocity v(β,W) as a function of the
tail exponent β in shown in figure 11 for various disorder strengths W :

(i) In the localized phase W > Wc, the velocity derivative is negative at β = 1/2:

[∂βv(β,W > Wc)]β=1/2 =
[

1

β2
ln �0(β,W > Wc)

]
β=1/2

= −
[

1

β
v(β,W > Wc)

]
β=1/2

< 0. (A.34)

The velocity is extremum at a W -dependent value βselec(W) < 1/2 and the corresponding
selected velocity is positive vselec > 0.

(ii) At the critical point W = Wc, the velocity is extremum at βc = 1/2 where it vanishes
vc = 0.
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Figure 11. Shape of the velocity v(β, W) as a function of the tail exponent β for various disorder
strengths W : (i) in the localized phase W > Wc, the velocity is extremum at a W -dependent value
βselec(W) < 1/2 and it is positive vselec > 0, (ii) at the critical point W = Wc, the velocity is
extremum at βc = 1/2 where it vanishes vc = 0 and (iii) in the delocalized phase, there exists
another traveling-wave moving in the other direction of velocity λ1(β, W) = −v(β, W) > 0: this
velocity is extremum at β = 1/2 for any W < Wc (see appendix B for more details).

(iii) In the delocalized phase, the velocity derivative is positive at β = 1/2:

[∂βv(β,W < Wc)]β=1/2 =
[

1

β2
ln �0(β,W < Wc)

]
β=1/2

= −
[

1

β
v(β,W < Wc)

]
β=1/2

> 0. (A.35)

We explain in appendix B that in this delocalized phase, there exists another traveling-wave
moving in the other direction with the velocity λ1(β,W) = −v(β,W) > 0: this velocity
λ1(β,W) is then extremum at β = 1/2 for any W < Wc (see appendix B for more details).

As a final remark, we believe that the solution exactly at Wc is not valid anymore because
of equation (A.28), and that the appropriate treatment exactly at criticality should replace the
finite velocity motion in vn assumed in equation (A.6) by the form

ln Yn = −(cst)nρ + ln yn, (A.36)

where the anomalous exponent 0 < ρ < 1 has been discussed in the text (see equations (35)
and (42)).

A.7. Conclusion

In conclusion, the analysis of [9] is thus very close to the traveling wave analysis of the
directed polymer model [26]: the difference is that in the directed polymer, the variables Xn

are random variables independent of the Yn and the selected βselec can be simply obtained from
the non-integer moments of X (see section 7.2 in [17]), whereas in the present localization
model, the variables Xn and Yn are correlated and one has thus to solve the eigenvalue problem
for the integral kernel of equation (A.15). In the following appendix, we explain how the same
ideas can be used in the delocalized phase.
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Appendix B. Tail analysis for the traveling waves in the delocalized phase

As explained in section 3, in the delocalized phase, we have considered the recurrence for the
real Riccati variable Xn

Xn = −εn −
K∑

m=1

1

Xn−1(m)
(B.1)

together with the recurrences of equations (67) for the auxiliary variables C(q) introduced in
equation (66).

B. 1. Tail analysis leading to the same integral kernel as in appendix A

To make more visible the similarities with the previous appendix, it is convenient to perform
the change of variables

D(q)
n ≡ (

X2
n

)q
C(q)

n (B.2)

to obtain the following recursions for these variables:

D(q)
n = 1 +

K∑
m=1

D
(q)

n−1(m)(
X2

n−1(m)
)q . (B.3)

The recursion of equation (B.1) for Xn alone will as before converge to some distribution
P ∗(X) satisfying equation (A.7). in the delocalized phase, one expects that the variables C(q)

will grow exponentially (see equations (81)). We thus set

D(q)
n = enλq d(q), (B.4)

where λq > 0 governs the exponential growth and where d(q) remains a finite random variable
upon the iteration

eλq d(q) =
K∑

m=1

d(q)(m)

(X2(m))q
. (B.5)

The similarity with the discussions of appendix A is now obvious (see equations (A.4) and
(A.5)). Assuming the power-law decay

P ∗(X, d) �
d→∞

�(X)

d1+μ
(B.6)

with 0 < μ < 1, one finds that the function �(X) has to satisfy the eigenvalue problem

eμλq �(X) = K

∫
dX1(
X2

1

)qμ Q

(
X +

1

X1

)
�(X1), (B.7)

i.e. it is the same integral kernel as in equation (A.13) with the correspondences β → qμ and
e−vβ → eμλq , but now we are interested in the phase λq > 0.

B.2. Selection of tail exponents

We have argued above (see appendix A.6) that the problem for the function �(X) is well
defined only for 0 < β = qμ < 1/2, i.e. the exponent μq that governs the power-law of
equation (B.6) is restricted to the interval

0 < μq <
1

2q
. (B.8)
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Figure 12. (a) Probability distribution H1 of the variable ln d(q=1) of equation (B.4) for various
disorder strengths W = 1, 5, 10, 15, 16.95: the exponent μselec

1 of equation (B.6) is of order
μselec

1 ∼ 0.5 in the whole delocalized phase. (b) For W = 1, comparison of the probability
distributions H1 and H2 of the variable ln d(q) for q = 1 and q = 2: the exponents of
equation (B.6) are respectively μselec

1 ∼ 0.5 and μselec
2 ∼ 0.25 in agreement with equation (B.12).

Denoting as before �0(β,W) the maximal eigenvalue of the kernel of equation (A.15), each
mode μ is associated with the Lyapunov exponent (see equation (A.4))

λq(μ) = 1

μ
ln �0(qμ,W). (B.9)

From equation (A.16), we have the following behavior for μ → 0:

λq(μ) �
μ→0

1

μ
ln K (B.10)

Near the other boundary μ → 1/(2q), the property of equation (A.32) yields that the partial
derivative with respect to μ is still negative at μ → 1/(2q)

[
∂μλq(μ)

]
μ→1/(2q)

=
[
− 1

μ2
ln �0(1/2,W)

]
μ→1/(2q)

< 0. (B.11)

For the special case q = 1, the curve λ1(β) is directly related via λ1(β) = −v(β) to the curve
v(β) discussed in appendix A and shown in figure 11 (see the delocalized case W < Wc).
Since the selected tail exponent μselec has to extremize λq(μ), we conclude that the selected
tail exponents are given by the simple values

μselec
q =

(
1

2q

)−
(B.12)

in the whole delocalized phase. This is in agreement with our numerical results. We show
in figure 12(a) the probability distribution of Hq=1(ln d) of the variable (ln d) of equation
(B.4) for various disorder strengths W = 1, 5, 10, 15, 16.95: the tail exponent μselec

1 of
equation (B.6) remains of order μselec

1 ∼ 0.5. For q = 2, we find similarly that the selected
tail exponent remains the same within the whole delocalized phase and that it is of order
μselec

2 ∼ 0.25. In figure 12(b), we compare for W = 1 the probability distributions Hq=1(ln d)

and Hq=2(ln d) of the variables ln d(q=1): the exponents of equation (B.6) are respectively
μselec

1 ∼ 0.5 and μselec
2 ∼ 0.25.
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From equation (B.12), we obtain that the Lyapunov exponents satisfy the identities

λselec
q = qλselec

1 . (B.13)

As explained in the text around equation (84), this identity is important to understand the
decay of IPR with the number N of generations in the delocalized phase.

B.3. Finite-size corrections introduced by the pool method

As explained in section 2.3.1, the pool method consists in representing a probability distribution
P(x) by a large number Mpool of random variables {xi}. In particular this introduces a cut-off
in the tail of P(x) around xmax with P(xmax) ∼ 1/Mpool. In the field of traveling waves, the
presence of such a cut-off has been much studied (see [43] and references therein): the leading
correction to the selected velocity is usually logarithmic in Mpool

vselec(Mpool) − vselec(∞) ∼ J

(ln Mpool)α
. (B.14)

For our present problem, where the critical point corresponds to a vanishing velocity v = 0, we
thus expect that the true critical point Wc(∞) corresponding to vselec(∞) = 0 will be shifted
toward a pool-dependent pseudo-critical point Wc(Mpool) corresponding to vselec(Mpool) = 0.
As explained in the text, all the traveling waves encountered in the present paper vanish
linearly in (W − Wc). We thus expect that the difference [Wc(Mpool) − Wc(∞)] will also
decay only logarithmically as 1/(ln Mpool)

α . From the analysis presented in appendices A and
B, it is obvious that the pool-dependent critical point for the traveling wave of the Landauer
transmission (see appendix A) and for the auxiliary variable C(1) or D(1) (see appendix B) are
the same because they are defined by the same condition in terms of the eigenvalue �0(β)

of the integral kernel. However, the other variables C(q) or D(q) that have the same true
critical point Wc(∞) will not have the same pool-dependent critical point Wc(Mpool), because
the constant J in equation (B.14) will depend on q. This is indeed what we observe with
our numerical computations with the pool Mpool = 105: the pseudo-critical point Wc(Mpool)

for the variable C(2) is below the pseudo-critical point Wc(Mpool) for the variable C(1). We
observe that the difference between the two becomes smaller for the bigger pool Mpool = 106.
In conclusion, numerical studies based on the pool method are valid for observables that are
related to a single traveling wave, but one cannot study the critical properties of observables
that depend on two distinct traveling waves that have different pseudo-critical points. This is
why in the text, we have not been able to present reliable numerical results for the statistics of
IPR I2 that depends on both C(1) and C(2).

Appendix C. Reminder on the traveling/non-traveling phase transition studied in [30]

In this appendix, we briefly recall the finite-size scaling properties of the traveling/non-
traveling phase transition studied in [30], because these properties are useful to interpret our
numerical results described in the text.

For a one-dimensional branching random walk in the presence of an absorbing wall
moving at a constant velocity v, the survival probability Q(x, t) presents a phase transition at
v = vc with the following critical behavior (see more details in [30]):

(i) For v < vc, it converges exponentially in time toward a finite limit Q∗(x) > 0

Q(x, t) � Q∗(x) + e− t
τ φ(x), (C.1)

where the limit Q∗(x) presents an essential singularity

Q∗(x) � e− cte
(vc−v)κ with κ = 1

2 (C.2)
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and where the relaxation time τ diverges as

τ ∝ 1

(vc − v)ν
with ν = 3

2
. (C.3)

(ii) For v > vc, it converges exponentially in time toward zero

Q(x, t) � e− t
τ̃ , (C.4)

where the relaxation time τ̃ diverges as

τ̃ ∝ 1

(vc − v)ν̃
with ν̃ = 1. (C.5)

(iii) Exactly at criticality, it converges toward zero with a stretched exponential

Q(x, t) � e−(cte)tρ with ρ = 1
3 . (C.6)

(iv) The critical region is described by some finite-size scaling form governed by the relaxation
time τ that appears in equation (C.1) (and not by the relaxation time τ̃ appearing in
equation (C.4))

ln Q(x, t)� −tρG(t1/ν(vc − v)), (C.7)

where the scaling function G(u) has the following asymptotic behavior. For u → +∞,
one has the power-law

G(u) �
u→+∞ u−νρ (C.8)

to recover the finite limit of equation (C.2) and one has the scaling relation

κ = νρ. (C.9)

For u → −∞, one has the power-law

G(u) �
u→−∞(−u)ν(1−ρ) (C.10)

to recover the exponential decay of equation (C.4), and one has the scaling relation

ν̃ = ν(1 − ρ). (C.11)

For the problem considered in [30] all the exponents are exactly known ν̃ = 1, ν =
3/2, ρ = 1/3 and κ = 1/2.

In our numerical results presented in the text concerning the traveling/non-traveling phase
transitions that occur in Anderson localization on the Bethe lattice, we find very similar critical
behavior: the velocity of the traveling wave vanishes linearly with ν̃ = 1, and the finite-size
scaling in the critical region is governed by the other exponent ν that appears in the relaxation
toward the finite value of the non-traveling phase.
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